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A~tract--An analytical model for the computation of temperature and heat flux distribution in a semi- 
infinite solid when subjected to spatially decaying, time-dependent laser source is investigated. The appro- 
priate dimensionless parameters are identified and the reduced temperature and heat flux as a function of 
these parameters are presented in a graphic form. Some special cases of practical interest are also discussed. 
It is demonstrated that the present analysis covers the continuously operating constant strength as well as 
instantaneous laser source cases, along with some new solutions. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 2. MATHEMATICAL FORMULATION 

There is an increasing interest in material processing 
using lasers; particularly, laser drilling, machining, 
and welding have been studied analytically and exper- 
imentally. Several such applications are discussed in 
Rykalin et aL [1] and Ready [2]. Dabby and Paek [3] 
observed several thermally induced effects when an 
intense laser radiation is incident upon a heat-transfer 
surface. One of these effects is the 'explosive removal 
of material'. A possible explanation for this phenom- 
enon given by Blackwell [4] is that the point of 
maximum temperature (before the phase change 
occurs at the exposed surface) lies inside the body 
because of the heat loss to the surroundings. We note 
that for a material which expands on changing phase 
and the initial phase change occurs inside of the body 
instead of at the exposed surface, then the explosive 
material removal is expected. 

Blackwell [4] investigated this material removal 
phenomenon analytically by calculating the tem- 
perature profile in a semi-infinite body with an expo- 
nentially decaying (with position) source and con- 
vective boundary condition. He showed that the 
location of the maximum temperature is a strong func- 
tion of the dimensionless parameters such as Biot and 
Fourier numbers. Zubair and Chaudhry [5] discussed 
the fundamental solution to the problem considered 
by Blackwell [4]. They provided an analytic solution 
to the problem in which the material is subjected to an 
instantaneous, exponentially decaying (with position) 
laser source. The objective of this paper is to discuss 
an analytical solution of a semi-infinite solid due to a 
general time-dependent laser source and convective- 
boundary condition. 

The heat conduction equation describing the tem- 
perature distribution in a semi-infinite, homogeneous 
and isotropic body with an energy source term is given 
by [6-8] 

t3T = k 02T + q " .  (1) 
pC o -~- 0x 2 

We consider a general time-dependent exposure of 
laser radiation which is absorbed within the material 
and has the effect of an internally distributed heat 
source. This is typically true for organic materials 
[2], in which the absorption coefficient is considerably 
smaller and the energy is deposited over a greater 
thickness. Thus, the energy source term in equation 
(1) may be modeled as [4, 5] 

q"(x ,  t) =/'0 (t)/~(1 -- R) e -u~ (2) 

where [o(t) is the time-dependent radiation intensity, 
R is the surface reflectance and /~ is the material 
absorption coefficient. This model assumes no spatial 
variation of [o(t) in the plane normal to the beam. 
Also, the problem times are sufficiently small so that 
the diffusion perpendicular to the beam (x) can be 
ignored [2]. 

The appropriate initial and boundary conditions 
are assumed to be the following : 

T(x, 0) = Tin t (3) 

c~ T(O, t) 
k ~ - h [ T ~ - T ( O , t ) ]  (4) 

and 
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NOMENCLATURE 

Biot number (Bi = hx/k) 
dimensionless energy absorption 
[80 = i0~(1 - R ) / Z p G O  : -  ~u~) × 
( T ~ -  T..t)] 
specific heat at constant pressure 
[ J k g  1 K - I ]  

Fourier  number (Fo = ca/x 2) 
convective heat transfer coefficient 
[W m-2 K l] 
energy released by laser source [J m 2] 
rate of energy released by laser source 
[W m -~] 
thermal conductivity [W m ~ K ~] 
dimensionless heat flux 
heat flux [W m -z] 
rate of  energy generation per unit 
volume [W m-3] 
surface reflectance 
Laplace transform variable 
time [s] 
temperature [K] 
spatial variable [m]. 

Greek symbols 
thermal diffusivity (~ = k/pCo) 

F 

2 

Z 
0 
® 

P 
It 

[m 2 S -1 ] 

G a m m a  function 
reduced time constant  ( :  = 2x/x/~ ) 
laser source constant [s-~"2] 
dimensionless distance (Z = #x) 
temperature,  (0 = T-Tint)  [K] 
dimensionless temperature 
density [kg m -3] 
absorpt ion coefficient [I/m]. 

Subscripts 
int initial 
oo free-stream 

1 instantaneous 
2 exponential-type 
3 constant surface temperature case 

21 at the wall 
22 constant strength 
23 no heat generation case. 

8T(oo, t) 
- o .  ( 5 )  

It should be noted that Blackwell [4] used the above 
boundary and initial condit ions to explain the explos- 
ive removal phenomenon in a semi-infinite solid due to 
a continuously operating, constant strength laser source. 

Defining 0 as the temperature rise above the initial 
temperature 

0 = ( T -  Trot ) (6) where 

and substituting in the above equations, we get 
and 

c~O 020 ( 1 R )  . 
•t = ~Ox ~ + ~ l°(t)Ite "" (7) 

O(x, 0) = 0 (8) 

t~0(0, t) h 
~ + ~ [ (T~ , -  T,,t) - 0(0, t)] = 0 (9) 

~0(oo, t) 
(?x - O. (10) 

Taking the Laplace transform of equations (7)-(10) where 
with respect to t and simplifying we get 

d2ff(x' s ) d x  2 (~)6(x ,  S) (1 -- R) ?0(s)/~ e "' ~pCp 
and 

(11) 

dO(O, s) h 
+-£[(T~-T~n,)/s-ff(O.s)l = 0  (12) 

dx 

dO(oo, s) 
d ~  - 0 .  (13) 

The general solution of equation (11) can be ex- 
pressed as 

O(x, s) = A exp(-x~/(s /c t ) )  

+ B exp( - #x) [o (s)/(s - b 2) 

B = ,u(1 - R)/pCp 

(14) 

(15) 

At A2~o(S) 
A - + (17) 

s(x/s+a) (s-b2)(x/s+a) 

A ,  = (hx/o~/k)(T,~ - T~.t) (18) 

A2 = - Bx/~(ll + h / k )  (19) 

a = hx/o~/k. (20) 

We can now express the transformed equation (14) 
by the following expression 

b 2 = ~#2. (16) 

Note that the constant 'A'  in equation (14) is evalu- 
ated by using the transformed boundary condit ion 
given by equation (12). This gives 



Heat conduction in a semi-infinite solid 3069 

O(x, s) = A,  exp( - -  x~j(s/ot)) 
s(x/ s + a) 

may be used to discuss several heat-conduction prob- 
lems arising in laser-induced processing of materials. 

+ A2 exp(--  x~/ (s/oO )}o (s) 
(s-- b 2) (~/s + a) 

B e x p ( -  ItX)}o (s) 
+ (21) 

(s -- b 2) 

which can be further simplified to 

if(x, s) = A,o exp( - x~/(s/ot)) 
s(x/(s/~) + a,) 

+ A:o[eXp(-x~/(s/~t)) sio(s) 1 
L s(x/(s/~)+a,) x ( s - b 2 ) [  

where 

B e x p ( -  Itx) ]o (s) 
+ (22) 

(s - b 2 ) 

A,o = A,/x/~ (23) 

A2o = A2/~/~ (24) 

a, = a/x/o~. (25) 

Taking the inverse transform of equation (22) by 
using the transform relationships given in Appendix 
A, we find 

O(x, t) = A'° [Erfc(_--~. . ~ -  E(atx, ctt/xZ) ] 
al L \2~/(~t)/ _] 

+ 
a, L(  k,2X/(~t)/ 

2 ) f O b~, • )7 

+ B e x p ( -  Itx + b 2 t) */(t)  (26) 

where '*'  is the convolution with respect to t as defined 
by equation (A6). 

Substituting the values of Alo, A2o, B, a, and b results 
in 

O(x, t) = (T~ - Ti,t)[Erfc(x/2~/(~t ) 

It (1 -- R) [ (it + h/k) -E(hx/k'ctt/x2)] ~ L ( ~  

× { Erfc(x/2~/(~t)) - E(hx/k, ott/x 2) } 

- { e x p ( - I t x +  eit2t)} • i(t)l .  (27) 

It should be emphasized that equation (27) is the 
temperature solution due to the general time-depen- 
dent, spatially decaying laser source. This formulation 

3. SOME CASES OF PRACTICAL INTEREST 

In this section, we use the preceding formulation to 
discuss some particular heat conduction problems in 
which the radiation intensity varies with time. 

3.1. Instantaneous laser source 
We note that an instantaneous laser source of 

strength [o(t) = lo6(t), when substituted into equation 
(27) and using equation (A8) results in 

01 (X, t)  = ( Tc~ - -  Ti,t)[Erfc(x/2x/ (~t) ) 

_E(hx/k,~t/x2) ] Io#(1 - R) 
pcp 

[cq? (It + h/k) {Erfc(x/Zx/ (c~t) ) 

- E(hx/k, ~t/x2)}, e ~;' 

- e x p ( -  Itx + ~#2 t)l .  (28) 

Using the properties of Laplace transform, Zubair 
and Chaudhry [5] have recently shown that the second 
term in the above equation can be reduced to 

[Erfc(x/2x/ (o~t) ) - E(a, x, o~t/ x2)] • e b2' 

- ~ [ e ( -  bxI4~, ~tlx ~) 
2b 2 (b/~/ct + a, ) L 

(b/x/ct + al) E(bx/x/ct, ~t/x2) 
(b/x/~-a,)  

2al E(a, x, c~t/x2)]. 
+ (bl~/~-a,)  3 (29) 

Substituting into equation (28), we find after sim- 
plification that 

Oj (x, t) = ( T~ - Ti,t)[Erfc(x/2~/ (ctt) ) 

-E(hx/k,~tt/x2)] I0# (1 -R)  
2pCp 

I (# + h/k) E(itx, ctt/x 2) x E( - i t x ,  ctt/x 2) (p-h/k~ 

2h/k + - -  E(hx/k, ctt/x 2) 
( i t -h/k)  

- 2 e x p ( -  Itx + ct# 2 t)l.  (30) 
d 

This is the same temperature solution as that discussed 
recently by Zubair and Chaudhry [5]. 
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3.2. Exponential-type laser source 
The exponential-type laser source of strength 

/'o(t) =/ '0e a:', where 22 can be positive or negative, 
when substituted into equation (26) gives 

Al0 
02 (x, t) = m-r [Erfc(x/2x/(at)) - E(al x, ~t/x 2)1 

+ { Erfc(x/2x/~t) - E(al x. at~x-) 

*C(eb:t*e'~?') +B[oe-'X[e;',e;"]. (31) 
Ot 

It should be noted that the second-term in the above 
equation can be simplified by using equation (A7) as 

[Er fc(x /2~(at ) ) -  E(al x, at/x2)] * [--(eb2', e ~:,) 
Let 

1 [( E7 4~t, / , - i /{  x,~ 
(2 2 - b  e) t~ .cnctx /zv tao)  

-E(a , x ,~ t / x2 ) }  *(22 e ; ? ' - b  2 eb-'t)] (32) 

which can further be simplified by using equation (29) 
as  

1 
( 22 _ bZ) " =  ¢^" / ~ / '  " t~n~tx/~vtat))  - E(a, x ,  at/x2)fl , )  

*(22 e ; ' - b  2 ebb)] 

_ ! [ ",; 
()d b2)L222(2/~/a+a,) 

x {E( - 2x/x/ct, at/x 2) 

(;'1"/~ + ~"~) E(2x/\/a0 ~t/'x ~) 
(2/x/a - a, ) 

2a~ E a + (2/ , /~-a,)  (~x'at/x2) 

alb 2 ( 
- -  E(--bx/x/~, at/x-) 

2b2(b/ , /a+a,)  l / 

(b/x/a + a, E(bx/x/c~, a t/x 2 ) 
(b/x/o~-a, 

2al  } l  
+ (b/x/a_al  E(alx'et/ 'x2) , (33) 

Using the values of b, ab A~0, Az0, B and substituting 
equation (33) into equation (31), we get 

02(x. t) = ( T~ - Ti.t)[Erfc(x/2x/ (ctt) ) 

- E(hx/k, at~x2)] 
(2 2 --  a#  2) 

[p(l  -- R)(# + h/k)[o 
X ! 

L 2p G (2/,/~ + h/k) 

× {E( -2x / x /~ ,  ~t/x:) 

(2/x/~ + h/k) E(2x/x/~ ' at/x2) 
(2&/~-h/k) 

2h/k E(hx/k, at~x:)} 
+ (;4~/~ - h/,t) 

p( 12 p-cpR)[° {E( - px, at/x 2 ) 

(p + h/k) . . . . . .  
Ltpx,  at/x ~ ) 

+ (~- k / k - ~  E(hx/k, at/x 2) 

+ p ( 1  - R)I~, e ~' [e": ' - -e  ~'2'] (34)  
P Co (22 - a/l 2) 

The temperature solution given by equation (34) may 
further be simplified by introducing dimensionless 
variables ®2, Fo, Bi, Bo, Z, z as 

®2 = Erfc(1/2~/Fo) - E( Bi, Fo) 

[ ( z  + B i )  ( 

(r + Bi) , ~ , ~ _ ~  Eta, ~o~ 

2Bi "F  o)} 
+ i~_ ~ e( 8', 

(Z + Bi) 
-- E(  - Z, Fo) + ( ~ - B i )  EO(, Fo) 

2Bi 
(Z - Bi) E(Bi, Fo) -- 2 exp( -- Z) {exp(z2Fo) 

- exp(z 2Fo)} ],  (3 5) 

where 

02 = 02(x, t)/(T~ -- Tint) 

= ( T ( x . t ) -  T im) / (T~-  Tmt ) (36) 

F o  ~ O~t/X 2 (37) 

Bi = hx/k (38) 

r = 2x/~/a (39) 

Z = / ~ x  (40)  
and 
Bo = B/2(T,. - Ti,t) 

=/'o/~(1 -R)/ZpCp(22-au2)(Too--Tint) .  (41) 
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We note  tha t  the first te rm in equa t ion  (35) is the 
solut ion for a semi-infinite body  wi th  a un i fo rm initial 
temperature ,  Ti,t, no  energy source, and  a convective 
b o u n d a r y  cond i t ion ;  it accounts  for a heat  loss or  
gain when  T~ and  T~,~ are different. Even when  
Ti,~ = T~, there will still be a heat  loss because the 
energy deposi t ion is causing the surface tempera ture  
to rise. The term mult ipl ied by Bo in equa t ion  (35) 
accounts  for heat  flow due to energy deposi t ion.  

It is of  interest  to calculate the heat  flux at  any 'x '  
by differentiat ing equa t ion  (34) wi th  respect to x. We 
find tha t  

,, k oT 
q~'~=- ~x 

= h(T~ - Tint)E(hx/k, ctt/x 2) 

+ / 'o /~(1-R)k f (#+h/k) 
2 2 { (2 --~,u )2pCp ((2/x/ct + h/k ) 

x I - ~  E ( -  2x/x/ct, ¢t/x 2) e x p ( -  x z ~4at) 
~/ (n~tt) 

exp(-- x2 /4ott) ~+ 2h/k 

~/(,~t) } (,W~-h/k) 

(~h 2 exp(-- x~ /4at) )]  
x \~ E(hxtk, ~ttx ) 

. . . .  2- exp(-xE/4~t) 
P~.t -- #x, ctt/x ) + 

(# + h/k) [ e x p ( -  x 2/4at)'] 
+ ; 

2h/k h 2 @---T/-~(~ e(hxtk' ~'ttx ) exp( -x= /4~ t0~  ~ 

#~k(1 -R) lo  e - ~ [ e  ~:' - e  =; ']  
+ (42) 

pC.(,~ ~ - ~ )  

We can  also express the hea t  flux in terms of  dimen-  
sionless variables Q2, Fo, Bi, Bo, z and  ;~ as 

Bor(*+  q 
Q2 = E(Bi, Fo) + Bi L \ z  + BiJ 

2Bi2 } 
+ ~ E(Si, Fo) - z E ( -  Z, eo)  

., (X + Bi) 2Bi2 Fo) 
+ ~ ~ E(X, Fo) (Z-- BO E(Bi, 

`3° ' ' ~ ' i l i l  i i i ~ '  

i ~ = x ~ / 4 ; = 0 . 0 0 i  ~ ! i i i 
25 -  

. . . . . . . . . .  v ' - -  ' 0 . 1 0  

i i = 0 . 2 0  • i ~ i i ~ 
2 0  ~ - -  n ~ 0  

- - T  ~ - ' + -  - -  ~ ' ~  ~ ' ' ~ i : I  
= o , o  l 

I i I i l  i i [ 

10- : i ! ] i  

5- ! { t i [ ~ i ~  : . . . .  ~ . . . . . .  ~ - ~ - - -  

1 E - 0 2  2 .3 4 5 6 1 E - 0 1  2 4 5 6 1E+00  
F o  = a ' t / x  2 - ' -  

F i g .  1. Reduced temperature as a function of dimensionless 
time constant and Fourier number for an exponential-type 

laser source at Bo = 100.0, Bi = 1.00 and Z = 0.01. 

= o . l o ~  

--,3 .................. + ........ i - - - i - i - ~  . . . .  ~ ...... ~--~-~" ~ 
! i J  i i i  i L [ 

- 5 -  ] 
1E--02 2 .3 4 5 6 1 E - 0 1  2 ,3 4 5 6 1E+00  

F o  = ~ t / x  2 - "  

Fig. 2. Reduced heat f lux as a funct ion o f  dimensionless time 
constant and Fourier number for an exponential-type laser 

source at Bo = 100.0, Bi = 1.00 and X = 0.01. 

+ 2)~exp(-x)(exp(rEFo)-exp()~:Fo)) 1 (43) 

where 

dT  
Q2 = q~.2/h( T~ - T~.t) = - k  ~x/h( T~ - Tint), 

and  o ther  dimensionless parameters  are described in 
equat ions  (37)-(41),  

The graphical  representa t ion  of  equat ions  (35) and  
(43) is shown in Figs. 1 and  2, respectively. In these 
figures reduced tempera ture  and  heat  flux solut ions 
are presented as a funct ion of  the dimensionless  t ime 
paramete r  Fo, for var ious values of  reduced t ime con-  
s tan t  z. All the curves shown in these figures are d rawn 
for the dimensionless  energy absorp t ion  rate 
Bo = 100.0, Blot n u m b e r  Bi = 1.00 and  reduced dis- 
tance )~ = 0.01. It  can be seen f rom Fig. 1 tha t  the 
reduced tempera ture  increases exponential ly with Fo. 
On the o ther  hand ,  the reduced heat  flux (refer to Fig. 
2) decreases with an  increase in Fo. For  example, at  

= 0.40, there is abou t  a ten-fold decrease in the 
reduced heat  flux value when  Fo is increased f rom 0.2 
to 0.5. It  should be no ted  tha t  the par t icular  case, 
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r = 0, in these figures represents the reduced tem- 
perature and heat flux solutions for the case of con- 
tinuously operating laser source of  constant strength, 
reported earlier by Blackwell [4]. 

3.2.1. Wal l  t empera ture  and  heat  f l u x .  The dimen- 
sionless wall temperature and heat flux can be deter- 
mined by evaluating equations (35) and (43) 'a t  
x = 0 2 T h i s g i v e s  1/Fo = O, B i  = O, g = O and  r = O. 

However, the products 

= Fol/Z z = x/(/~2~t) 

q = Fol. '2Bi = h 4 ( o t t ) / k  

= FoI"2T = t,~/l 

05 = z / B i  = l~k/h 

F = ¢ /Bi  = 2k /h~ /7  

remain finite, because the geometric distance "x' has 
been suppressed in these. For  this reason, the dimen- 
sionless temperature and heat flux at the wall is given 
by the following simplified equations : 

O 2 1  = 1 -exp(r /2)  Erfc(r/) 

05+1 ~ 

F + I  
-- (~ -1_  1 )exp(~2) Erfc(~) 

- exp (B2) Erfc( - fl) 

[ . 0 5 +  1\ x 2 + ~ _ _  ]-}e p(fl )Erfc(fl) 

-- ( ~ _ _  1)exp(r/2) Erfc(r/) - 2[exp(g2 ) 

- exp( f l2 ) ] ]  (44) 

100 

8 0 -  : .,.. , : j . . . . . . . . . . .  i i # P i - # q  

60- 
t ~ 

[ ---?,. ~-TH ....... 

20 . . . . .  ~ 

i 
0 t i t i I l l l l  i i i i i i l i  
1E-01 2 3 4 5 8 1E+O0 2 3 Z 5 6 1E+01 

= Fo~/2Bi = h x / ~ ' / k - - "  

Fig. 3. Reduced wall temperature as a function of dimen- 
sionless parameter q and 05 at Bo = 100.00, fl = 1.00, 

= 1.00 and F = 0.50. 

+ 205[exp(~ 2) - exp(fl:)] 1 • (45) 

Figures 3 and 4 represent the dimensionless tem- 
perature and heat flux at the wall in terms of  dimen- 
sionless parameter  ~/and 05 at B o  = 100.0, fl = 1.00, 

= 1.00 and F = 0.50. We note that  the reduced tem- 
perature plots (refer to Fig. 3) are represented by 
characteristic Gaussian-type curves, where the tem- 
perature decreases with an increase in values of q and 
05. As expected, the reduced heat flux plots (refer to 
Fig. 4) show that  there is an increase in the reduced 
flux with r / and  05. Fo r  example, at r / =  1.00, there is 
about  50% increase in Q2~ when 05 is increased from 
0.25 to 0.40. It should be noted that  for a given 
material,  low values o f t / and  05 imply a small time and 
high convection coefficient. 

3.2.2. Laser  source o f  cons tan t  s trength.  We note 
that 22= 0 (or v = 0) in equations (35) and (43) 
reduces to the case of continuously operating laser 
source of constant strength i0(t) = [0. This gives 

®22 = E r f c ( l / 2 ~ / F o ) -  E(Bi, Fo) 

and 

Erfl 05 + 1 

F + I  
x { -  F exp(~2) E r f c ( -  ~ ) -  F ( ~ )  

2 / 2 \ 2 x exp(~ ) E r f c ( ~ ) + / ~ l ) e x p (  q )Erfc(q)} 

- 05 exp(#  2) Erfc( - #) + 05 (05 + l )  

2 2 
x e x p ( f l 2 ) E r f c ( f l ) - ( ~ i - ) e x p ( r  / ) Erfc(r/) 

500 

,~o- ; i * = ~/Bi = .k/h = 0.45 

.................... ---( [ ........ -:-ol--i 
400-  ,~ .- - : . . . . . . . . . . . . .  ~_.. . . ,  _z.......~...~ ~ ; 

. . . .  t 
300  

1E-01 2 .3 4 5 6 1E+O0 2 3 4 5 6 1E+01 

r/ = F o ~ a B i  = h - q ~ / k  

Fig. 4. Reduced wall heat flux as a function of dimensionless 
parameter q and 05 at Bo = 100.00, fl = 1.00, ~ = 1.00 and 

F = 0.50. 
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F 
- -  Bo [(z/Bi + 1){2 Erfc(1/2~/Fo) 

-- 2E( Bi, Fo) } - E ( -  ~, Fo) + ( Z + Bi] 

2Bi 
x E(Z, Vo) (Z-- BO E(Bi, Fo) 

-- 2 exp(--  ~) (1 -- exp(x 2 Fo))]  (46) 

and the reduced heat flux is 

Bo r 
Q 22 = E(Bi, Fo) - -~t [2Bi(z/Bi + 1) 

/: z + Bi~ 
x E(Bi, Fo) + ~ E ( -  Z, Fo) -- Z t z - ~ i i )  

2Bi z 
× F4X, ro) + ~ F,(Bi, Fo) 

--2)~ exp(--X)(1 -- exp(z2Fo))] (47) 

which are the same temperature and heat flux solu- 
tions as those discussed by Blackwell [4]. It should, 
however, be emphasized that with the introduction of 
the function E, the solutions are presented in a more 
compact form than those by Blackwell. 

3.2.3. No heat generation. We note that for the case 
of no heat generation in the solid, the reduced tem- 
perature and heat flux can be determined by evalu- 
ating equations (35) and (43) at ;~ = 0, Bo = 0 and 
z = 0. This gives 

®23 = Erfc(l/2~/Fo) - E(Bi, Fo) (48) 

and 

QE3 = E(ai, Fo) (49) 

where the function E is defined in the appendix as 
equation (A4). We note that this is the same tem- 
perature solution as that reported by Carslaw and 
Jaeger [6] and Grigull and Sandner [7]. 

3.2.4. Constant surface temperature. Another 
important solution which can be recovered from the 
present analysis is for the case of constant surface 
temperature, that is, substituting l / h = 0  and 
Tint = Too in equations (34) and (42). We find 

O3 = -- E(-- z, Fo) -- E(z, Fo) + E(-- ~, Fo) + E(Z, Fo) 

+ 2 e x p ( -  z)[exp(zZFo)-- exp(z2Fo)] (50) 

I 
Q3 = z [ -  ~E(-  ~, ro) + TE(~, ro) + XE(-- X, Vo) 

- zE(z, Fo)] + 2 e x p ( -  ~)(exp(z2Fo) - exp(zZFo)) 

(51) 
where 

=xx/V~ =O.lO~ / i  ! / i  
=o20~ i 

o.,o . . . . .  / 
= 0.50i • f i i 

i i ~ i i i i i  ' , i i I 

0 , 0 - _ _  ', +- 4i 
i i l l  ~ 

0 . 2 0 - ~  

0.00[ - - '~- '7 -T i ~ ,  i i I ; 
1E-01 2 3 4 5 6 1E÷O0 2 3 4 5 6 1E+01 

F o  = a t / x ; - - *  

Fig. 5. Reduced temperature as a function of dimensionless 
time constant and Fourier number for the case of constant 

surface temperature at X = 0.05. 

and 

Q 3 -  

2pCp(22 -- ~#2)0(x, t) 

/ 0 . ( 1  - R )  

2pC,(2 2 --o~/t2)(T(x, t) - Ti.t) 

/oU(1 - R) 
(52) 

2pcp(,~: -~2)q;,2 
/0~2k(1 - R )  

= (53)  
]'o/~2 k(l  --R) 

The graphical representation for the case of con- 
stant surface temperature solution given by the above 
equations, is shown in Figs. 5 and 6. In these figures, 
the reduced temperature and heat flux are presented 
in terms of Fo and z at the reduced distance X = 0.05. 
We note that the reduced temperature increases expo- 
nentially with the Fourier number, whereas the heat 
flux decreases with an increase in Fo. For  example, at 
z = 0.50, there is approximately a seven-fold increase 
in the reduced temperature value when Fo is varied 
from 0.1 to 1. It shouh [ be noted that for a fixed spatial 

0 

- 2 - L  ......... ~ ' < ~  ! ! ! / 
I~ = ~ v - ~  ~ 

- 4 f i  " -- o 2 o " ~ - - d :  

_o: !i 

' i  i i i i : 1 
-,ol, L I,L 1 i\! 

1E--01 2 3 5 6 1E+O0 2 3 4 5 6 1E+01 
FO = oa/x 2 "*  

Fig. 6. Reduced heat f lux  as a func t ion  o f  dimensionless t ime 
constant and Four ie r  number  f o r  the case o f  constant  surface 

temperature at ~ = 0.05. 
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location in a given material, an increase in Fo implies 
that there is also an increase in the time of  laser 
exposure. On the other hand, Fig. 6 shows that the 
reduced heat flux decreases with an increase in Fo and 
r. For  example, at z = 0.50, the flux decreases from 0 
to - 2  when Fo is increased from 0.10 to 0.60, respec- 
tively. 

4. CONCLUDING REMARKS 

The closed-form temperature and heat flux solu- 
tions for a time-dependent laser source when subjected 
to convective-boundary conditions, are presented in a 
compact  form by using the generalized representation 
of  an error function. The solutions are discussed for 
the case of  laser source of  the form [o(t) = Joe;', where 
22 can be positive or negative or equal to zero. All the 
results are presented in terms of  the reduced time (Fo), 
reduced energy absorption rate (Bo), Blot number 
(Bi), dimensionless distance (Z), and reduced time 
constant (z). Additional dimensionless parameters are 
also identified for discussing the wall temperature and 
heat flux solutions. As expected, the graphical rep- 
resentation of  the solutions indicates a strong depen- 
dence of  Fo, both for the case of  convective cooling 
of  the exposed surface as well as that of  constant 
surface temperature cases. 

The contributions due to uniform initial tempera- 
ture, no energy source, and a convective cooling of  
the exposed surface, as well as that due to heat flow 
caused by energy deposition, are identified in the solu- 
tions. In addition, solutions of  special cases which 
include (i) instantaneous laser source and (ii) laser 
source of  constant strength discussed in the literature 
are recovered from the present formulation of  a gen- 
eral time-dependent exposure of  laser radiation which 
is absorbed within the material and has the effect of  
an internally distributed heat source. 

It should also be noted that the analysis discussed 
in this paper is limited for convective cooling of  the 
exposed material surface; however, radiation losses 
will be important  for most materials when the surface 
temperature approaches phase-change temperatures. 
We emphasize that for applications in which radiation 
losses and an ablating boundary conditions are impor- 
tant, a numerical model  is essential that may be 
checked under the limiting conditions against the ana- 
lytical solutions discussed in this paper. 
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APPENDIX A 

The following relationships are useful in finding the inverse 
transform of equation (22) : 

1 x ~ ,  [exp(- ~4(s/~))] = -[Erfc(~- E(cx,~t/x2)l 
k s(~/(s/~)+c) J c L k2x/~t/ A 

(A2) 

and 

In particular, 

1 
e "' * e" = - - ( c  - a) [ ec' - ea'] (A7) 

f(t) * 6(0 = f(t). (A8) 

L (~/(sl~)+c) J 
-:wE@x,:~t/x2)(x > 0,~ > 0) (A3) 

where the function E(cx, ~t/x 2) is given by [9] 

E(cx. ~t/x 2) = exp [cx + c2 x ~ (~t/x2)] 

x Erfc( x +cxx/(c~t/x2)) (A41 
\2x/(~t) 

and the differentiation with respect to 'x' is 

8 1 
[E(cx, o~t/x ~)] = cE(cx, ~t/x 2) - ~ exp( - x 2/4o~t). 

~/ ( ~ t )  

(A5) 

The convolution of the functionsf(t) and g(t) is given by 

{fit)} * {#(t)} = f ( t -u )y (u)du .  (A6) 


